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Abstrad In this paper a Hilbrrt space of the Helmholtz equation solutions has been coIlsrmcted 
by means of the algebraic generator mordiMfe method This Hilbert space has been regarded 
as a space of wavized Helmholtz Lie optics, which is a good model of systems with bounded 
momenta 

1. Introduction 

The Helmholtz equation, known for more than a hundred years, is used in many fields 
of physics and is still an interesting object of investigation. Lie optics, in general, is 
an attractive and valuable approach to different areas of light and magnetic optics, signal 
analysis and tomography (for a review and references see [1,2]). On the other hand, 
Euclidean Lie optics [3] is a good physical and group theoretical model of systems with 
bounded momenta very useful for analysis of the Helmholtz equation arising in this model 
in a very natural way. 

The main purpose of this paper is to find a Hilbert space, denoted by IC, of functions 
suited for Helmholtz equation solutions applying the algebraic generator coordinate method 
(AGCM) to Euclidean Lie optics. This realization of the Hilbert space of Helmholtz equation 
solutions is unitarily equivalent to the realizations found in [4,5] but also allows other 
representations of the solutions because the scalar product in this Hilbert space is expressed 
by integrals over the whole space R3 and not only over the space of screen variables as in 
[3]. It is useful in many applications. 

The class of spaces constructed in this paper also furnishes the carrier spaces of some 
irreducible and unitary representations of the Euclidean group E3 = ZSO(3). 

Another interesting problem analysed in this paper is consideration of the space IC as a 
possible space of wave states for Euclidean (Helmholtz) Lie optics. 

In section 1 we collect the most important information about Euclidean Lie optics 
together with the underlying group structures and the specific model, the so-called Helmholtz 
Lie optics, which are needed for further consideration. In section 3, for convenience, we 
adapt the AGCM to the case of Euclidean Lie optics. Sectinn 4 contains the main result of the 
work-the construction of the optical state space for Helmholtz optics which is irreducible 
with respect to E3 and which is a Hilbert space of the Helmholtz equation solutions. In this 
section we also discuss some aspects of a wavization procedure for Helmholtz optics. 
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2. Euclidean Lie optics 

The phase space of Euclidean Lie optics, improbable in point-particle mechanics, is bounded 
in momenta which range over the so called Descartes sphere of radius n (n denotes the 
refractive index) and the basic gonp of global optics is the three-dimensional Euclidean 
group &3 = I S O ( 3 )  = S0(3) [T31 of rigid motions in R3 which is the semisimple product 
of the rotational group SO(3) and the translational group in three dimensions T 3  [3 ] .  
Following the notation presented in [31 the elements of the Euclidean group, which is the 
group of motion of this optics, can be parame~zed as follows 

A G6.W and M Rogatko 

&3 3 E(Q, v) = E(Q, O)E(l, w) (1) 

where Q is a proper orthogonal 3 x 3  matrix which depicts rotation in W3 and v is a Cartesian 
three-dimensional vector responsible for translations. The group multiplication is given by 
the following relations: 

0) E ( Q ~ , v ~ ) E ( f i z , w z )  = E ( Q ~ Q Z , ~ I Q Z + ~ Z ) ,  
(ii) the group unit is E(l,O), 
(iii) the inverse element is E(Q, w)-' = ~(n-', -wQ.-'). 
On the six-dimensional Euclidean group manifold one can build a space of functions 

f(P, T), where the dependence on P is referred to the direction in R3 and T is referred 
to the position. The action of the group element on the function f is defined by the right 
group action 

E(Q, w ) f ( P ,  7) = f(PQ, TQ f w). (2) 

The Haar measure on E3 is the product of the appropriate Haw measures of the rotation and 
translation groups. On the direction sphere Sz the invariant surface element is 

dzS@) =nZsinOdOd@ (3)  

where n is the index of refraction and O and @ are spherical angles. 
In [3]  a general strategy for constructing the configurational spaces of Euclidean Lie 

optics was considered. Two models of these spaces have been analysed. The first model, 
with elementary objects corresponding to light rays, leads to 4ir geometrical optics and the 
second one, called Helmholtz optics in which the elementary objects are not lines but planes 
representing wavefronts, leads to scalar wave optics based on the Helmholtz equation 

where k denotes the wavenumber. 
In Helmholtz optics [3,61 the symmetry group of plane wavefronts is a two-dimensional 

Euclidean group &z. In this case the group of motion &3 can be decomposed in the following 
manner: 

~ w w . e , ~ ) ,  7) = E ( Q W , O , O ) ,  ( t l , t i ,o ) )~(~t (o ,e ,@) ,  ( o , o , U )  (5) 

where 

fri, rz. r3) = (ti. tz, O)fi(O, + (O,O, U). 
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This factorization ensures that the coordinates (e, tl , t2) are in the appropriate coset (denoted 
by ‘@) while thecoordinates (e, 4,  U) in the space W = &\&S. Instead of the angles 0 and 
$ one can write a 3-vector p of fixed length n with the direction determined by (e,  4). This 
vector is interpreted here as the optical momentum vector. A point in W can be interpreted 
as a wavefront, i.e. a plane Xwf in the Euclidean space. 

The space of all directions p (the optical momentum space) plays a crucial role in 
the Helmholtz optics and can be represented by a two-dimensional sphere Sz (called the 
Descanes sphere) of radius n. On the Descartes sphere one can construct a space L2(Sz)  
of square-integrable functions O(p) on the sphere of all directions. The solutions of the 
optical Helmholtz equation (4) can be uniquely determined by the functions O(p) in the 
form: 

F(T)  is a continuous linear’superposition of plane waves over all directions. Here and in the 
Helmholtz equation (4 )  k denotes the wavenumber. As we shall see later, the wavenumber 
k determines the appropriate representations of fie Euclidean group for Helmholtz Lie 
optics. Physically, fixing k models the Helmholtz optics as a monochromatic wavefield; for 
a more detailed discussion see section 6.9 of [3]. 

It will also be interesting to see how the action of the Euclidean group on F(T) induces 
its action in the momentum space consisting of the functions Ob) .  In order to see this, 
one can use the integral representation (6) of the function F ( T )  

k 
E ( a ,  T ) F ( T )  = F(T S2 + v) = - dZS(p) 6(p) exp(ikpr/n) (7) 

2nn l2 
and obtain the required transformation of the function Q(p) 

= (~(a, v ) ~ ) ( p )  = @@a)exp(ik(pa)v/n). (8) 
We exploit this action in the momentum space in further considerations. 

The oscillatory solutions (6) of the Helmholtz equation were used in [3,6] to construct 
a possible space of wavefunctions for the wavefront Helmholtz optics. Geometric optics 
has no time variable and neither does the Helmholtz equation. ‘Time’ can be modelled 
as a distance measured along an arbitrary optical axis chosen here as the z axis. It has 
been pointed out [3] that every function F ( r )  in (6) can be rewritten as a two-component 
function which satisfies the Helmholtz equation transformed to a Schrodmger-type equation 
with time = z. This way, by putting the coordinate r: = 0, the three-dimensional optics can 
be reduced to two dimensions (on the screen). Using this two-component decomposition of 
the functions F(T)  one can build the Hilbert space 7tk of the oscillatory solutions of the 
Helmholtz equation. The inner product of these functions should be unchanged if we move 
or rotate the screen to any other plane. Such a Euclidean invariant inner product was found 
by Steinberg and Wolf 141. This inner product is non-local and has the form 

where q and q’ are coordinates on the ‘screen’ and 
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This Hilbert space of the Helmholtz equation solutions 7& is unitarily equivalent to the 
Hilbert space LZ(&) of functions in the optical momentum representition. In this paper we 
give an alternative construction for the Helmholtz Lie optics space, denoted by IC, which is 
unitarily equivalent to L2(&) and ?tk spaces and consists of classes of scalar functions on 
three-dimensional space R3 instead of two-component functions on R3 as in X K .  

A G6tdt and M Rogatko 

3. AGCM 

The goal of this section is to adapt the AGCM described in [5,7] to the case of Euclidean 
Lie optics because in this special case, one needs to use the right action of the group of 
motion G instead of the left one. In this approach the main role is played by the L'(G) 
algebra with involution where G is the locally compact group of motions. In Helmholtz 
Lie optics it is the Euclidean group G = &3. The algebra L'(G) is the Banach algebra of 
complex functions on the group G with involution given by the relation 

Ut(&=) = U'(g-1) (10) 

where * is the usual complex conjugation and the multiplication law is established by means 
of the right convolution in the following form 

( u * ~ ) ( g )  = Ldg'n(g%kg'-') (11) 

where dg denotes the Haar measure on G. Because the Euclidean group is unimodular the 
right and standard left convolution denoted in [5,7] by o are simply related to each other, 
namely 

u * u  = U  0 U. (12) 

The second most important object in the AGCM approach is the functional (metastate) on 
the algebra L'(G) which describes the moving physical system. In our special case of 
Helmholtz (wavefront) Lie optics the wave packets describing wavefronts are moved by the 
Euclidean group. The most general metastate on L'(G) can be written in the form 

( P ; u )  = l d g u ( g ) ( ~ ; g )  (13) 

where ( p ;  g) denotes a complex function on G which fulfils the following three conditions: 
(i) ( p ;  e) = 1, where e denotes the unit element in the group G;  

(iii) for any finite sequence 0 1 1 ,  . . . , a, of complex numbers and any arbitrary sequence 
gl, g2, . . . , g, of points on the group manifold, n = 2.3,. . ., the following relation is 
fulfilled 

(ii) ( P ;  g-') = (P;  g)"; 

(iv) the function defined by IG dg(p; g-'g)u(g) belongs to the algebra L'(G); 
(v) the function (p ;  g) belongs to the space of essentially bounded functions usually 

denoted by Lm(G). 
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We call the function (p; g) the mewtate kernel (m). Using the invariance of the Haar 
measure one can see, by direct.calculations, that for an arbitrary function (p;  g) E L1(G)  
condition (iv) is always fulfilled. Please, note that we denote the functional (metastate) by 
the same symbol lp ;  ) as the complex function (p; g) (m) because it is easy to distinguish 
between them by specifying their arguments. 

In the AGCM approach the space of quantum states is constructed by mehs  of the'well 
known GNS (Gelfand-Neumark-Segal) procedure in the algebraical approach to quantum 
mechanics and field theory [8,91. The functional (10) allows us to introduce a scalar product 
in the obtained linear space 

(u lu) ( p ; u @ * u ) .  (14) 
. 

It is worthwhile to note that this scalar product is non-local with an integral kernel 
determined by the MK ( p ;  g). The linear space obtained by the GNS procedure endowed with 
scalar product (14) can be turned into the Hilbert space K after the standard completion. 
As a result one obtains the Hilbert space of states represented by classes of the algebra 
elements indistinguishable from the group of motion for a fixed metastate. More precisely, 
the elements U and U belong to the same class when their difference has the following 
property: 

(p; (U - U)@ * (U - U)) = 0. (15) 

To find all these zero elements (15) is straightforwardly related to the zero eigenvalues 
problem of the overlap operator in the GCM approach [IO]. Following this idea we inaoduce 
an analogue of the overlap operator (we will also call it the overlap operator) as follows 

One can prove that the element U of the algebra L'(G) is a zero element if and only if 

NRu = 0. (17) 

In [5,7] the unitary equivalence between the standard GCM approach and the AGCM method 
has been shown for the standard form (left one) of the convolution operation, provided that 
the complex MK ( p ;  g) is expressed in the form of a diagonal mahix element of a unitary 
representation T(g) of the group G in a Hilbert space. For the right convolution (11) this 
correspondence is no longer unitary but anti-unitary. This statement can be directly proved 
in exactly the same manner as that used for the more standard case of left convolution IS, 71. 
In a rough approximation, by choosing 

( P i g )  = (- IT(g)l -) (18) 

for every function U E L*(G) one cawfind the corresponding wavepacket in the space of 
vectors I -): 

U -+ kdgU'(dT(g)tl -). (19) 

This way by using the AGCM one can construct the space of 'wave' states. In the next 
section we consider the details of this construction. 
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4. The optical state  space for Helmholfz optics 

As a first step we specify an elementary packet of wavefron<, a function @ob) ,  as objects 
moved by the Euclidean group of motion. For this purpose, following the general ideas 
of the AGCM, we define the MK in the form of a scalar product determined in the optical 
momentum space L2(S2) [3], namely 

(ao; E(Q, w))s, = -(@olE(Q2, w)@o)& = ;IS 

where for the function 00 we have chosen the simplest spherical harmonics Y&) = 
l / G .  This choice of MK leads to a space describing the motion of the wavepackets in 
the form (19) with [ -) = @&I). A little algebra gives the following MK 

A Gdi& and M Rogatko 

Y (20) 
1 

nz d2S(p) @o(p)*E(Q2, ~ ) Q o ( p )  

(Yw; E(Q, = - d2S(P) Y~~(p)Yw(pQ)exp(ik(pQ)wln) .  (21) 
:z J, 

The exponential function in equation (21) can be expanded in a series of spherical functions 
Km and spherical Bessel functions j ,  by the formula [ll]: 

where (&, &), k = 1,2, denotes the spherical angles of the vectors 71 and r2, respectively. 
Using the orthogonality of spherical harmonics, after straightforward integration we obtain 
a rather simple form for the b f ~ ,  namely 

(Yw; E W ,  w))sl = jdklwl). (23) 

Using this MK one can write the right overlap operator acting on a function U E L'(G) in 
the form 

WR~)k') = $ l2 d 2 W )  l, dg(E(g-')@o(p))*(E(g'-')0~~))u(g) ('24 

where we use the abbreviation g = (Q, w). In our case of GO@) = Y&) we get 

d'~dQjo(klw-w'l)u(Q,w) (3) 

because 

The set I?,,, of zero elements related to equation (15) (for more detailed consideration see 
[5,7]), can now be found from equation (17). It is immediately seen that the set Eoo 
is a set of all functions u(Q,  v) which do not contain the scalar part with respect to the 
SO(3) group. However, one can prove that there are alsofunctions which contain the scalar 
part with respect to the SO(3) group and they belong ro I?,@,,. It is seen from the relation 
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between the metastate (13) with MK (23) and the scalar product in the optical momentum 
space Lz(&.) 

where li and CJ denotes the usual Fourier transforms of the functions u and w with the 
following normalization 

k 

This means that function U which is independent of Euler angles belongs to 'Roo if and only 
if its Fourier transform li given by (28). restricted to the Descartes sphere SZ, represents the 
zero vector~in the optical momentnm space L ' ( S ~ ) .  

To derive relation (27) it is sufficient to consider the functions U and w to be independent 
of Euler angles, i.e. one can start from the expression for the metastate (13) with MK (23). 
After some algebra it can be written as 

d ' r ' u * ( T ) j o ( k l r - r ' l ) ~ ( T ' ) ~  (29) 

Now, making use of the integral form (26) of the spherical Bessel function j o  for v ' = 0, 
after changins the order of integration, one can easily obtain result (27). 

In this way we have found the set 'Roo of all functions U for which 

(Ym; ut * U)& = 0. (30) 

The set 'Roo is a left-ideal in the algebra L1(&) and the space of states, following the GNS 
construction, is the completed quotient space 

IC = L'(E3)/%, (31) 

with the scalar product 

(32) ti ( ~ l i d u ) l ~ M ~ ) ) ~  = (f'm; * u)s2 

where &(U) denotes the vector from the space IC (i.e. the class of functions equivalent to 
 the function U). Following the tradition of quantum mechanics of not using complicated 
notation, we usually write the representative u instead of the class cl&). Note that the 
scalar product (32) is non-local as in [4] and also Euclidean invariant. 

From OUT considerations one can conclude that: 
(i) every vector in the optical state space IC is determined by its Fourier transform 

(ii) this Fourier transform should belong to the optical momentam state space Lz(Sz); 

(iii) the correspondence between IC and Lz(Sz) is unitary. 
Now we may find the generators of the Eucildean group &; on the state space IC assuming 

restricted to the D e s c m  sphere SZ; . .  

and 

the right action in the form 

E(Q, v)cl,&) = cl,C(E(G, v)u)  . .  (33) 
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where 
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(E(S2, W)Y)(T) = u(Tn+W). (34) 

Standard calculation shows that, in our case, the generators can be written in the same form 
as the very familiar generators in L2(R3). The operators 

fx = alax Py = aiay Ii; = aiax (35~) 

generate translations in the x ,  y and z directions and kk generate rotations around the 
appropriate axis 

?e three-dimensional Euclidean algebra has two quadratic invariants, 7' = +. + and 
T . R. In our case the second invariant is identically equal to zero on K. The first one can 
be calculated directly. For this purpose one can compute 

because for [si = n 

{ - 5 s 2  +k'} U(s) = 0. 

This interesting result implies that all vectors in K are eigenvectors of the first invariant 

(37) 

and they belong to the irreducible representation of the Euclidean group E3 determined by 
the wavenumber k. Because f 2  is represented by the usual Laplace operator equation (37) 
represents Helmholtz equation (4). This means that every vector in IC is a solution of 
the Helmholtz equation (4). This property can be expressed as follows. Every complex 
function on R3 which belongs to absolutely integrable functions space L' (R3) considered 
as an element of K is a solution of Helmholtz equation (4). 

The space K can also be regarded as a space of states for wave Helmholtz optics. In 
[3] a wavization procedure has been considered by representing the generators of & in 
Xtk.  However, within this procedure the multiplicative position operators 6 were not well 
defined. It seems that in our construction with E3 generators (35a) with the standard form, 
the position operators and the operators (35a) would fulfil the standard Heisenberg-Weyl 
commutation relations. In reality this is not the case. Operators like 6 are also not well 
defined in OUT space because their action in K: depends on the choice of representatives 
from the classes(=vectors) c~K(u). 

To find a condition which must be fulfilled by an operator A to be well posed in IC one 
needs to consider its action on null functions, i.e. functions belonging to Roo. The action 
of A should be closed in the set Roo. One can express the null functions in the form 

T -2  C ~ K ( U )  = -k2clK(u) 
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where the subscript IS, denotes restriction to the Descartes sphere. The condition that the 
operator A~should transform a null function into another one can thus be written as 

Condition (39) is fulfilled by the generators (35), e.g. for the operators 
equation (39) is satisfied identically for every function G 

from (35a) 

[ G ( S )  - ~lS,(S)llh = 0. 
Similar equations can be obtained for the rotation generators (35b). However, for standard 
position operators ik, with k = x ,  y .  z ,  defined by &(T) = rku(r), we get from (39) the 
following equation 

which cannot be satisfied for all functions G. 
The optical momenta operators which can be expressed by the generators (35a) 

-in 
k j j k  = -Tk 

are well defined and one can immediately see from equation (37) that they fulfil the required 
property for their ranges, i.e. 

$2 + jj: + j,2 = 2. (41) 
This implies that they have continuous and bounded spectra. 

5. Summary 

In this paper a new realization of the Helmholtz equation solutions space IC has been 
considered. The space is a Hilbert space with a non-local and Euclidean invariant scalar 
product (32). It consists of classes of complex functions on the Euclidean &3 group manifold. 
The functions which differ only in the part which is non-scalar with respect to the SO(3) 
group, belong to the same class-they represent the same vector in K. However, among 
 the SO(3)  scalar functions there are functions which belong to the same class if they have 
the same representations in the optical momentum space, i.e. every vector in K can be 
represented by an appropriate complex function on W3. All three spaces-K, the optical 
momentum space L2(&) and the Helmholtz optics space 7&-are unitarily equivalent but 
they offer different representations of the Helmholtz equation solutions space. 

The space IC regarded as a wavized Helmholtz optics space fulfils the conditions for 
bounded momenta; however, as in the case of previously obtained spaces [3], it does not 
admit the standard form of the position operator-maybe it does not exist at all. In general, 
searching for the appropriate observables in this model is still an unsolved problem which 
requires further investigation. The Euclidean group which is the group of motion for this 
model also provides a good and relatively simple smcture allowing the investigation of 
some features which are helpful in the analysis of the Poincar6 group as a group of motion. 
The case h d e r  consideration is also a non-trivial example of the application of the GNS 
construction. 

By means of the AGCM formalism we~also searched for the possibility of introducing 
vector as well as scalar Helmholtz optics but in vain. We obtained the empty space of 
states; see the appendix. 
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Appendix 
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An interesting question which naturally arises is to enquire about the possibility of 
constructing optical state space for vector instead of scalar Helmholtz Lie optics. To do this 
one will consider a function 01 (p) in the form of vector harmonics: 

CWP) = YL,(e, 6) = C(JmlulJM)Y,m(e,6)xu (AI) 
M 

where xu denotes the spin matrix. The total angular momentum J consists of the orbital 
angular momentum L and spin equal to 1. Considering the Maxwell equations the 
transversity of electromagnetic waves has to be taken into account. This condition implies 
that YfM(e, 6) fulfils the requirement 

.YfM(8, 6) = 0. ( A 3  

The above equation imposes a certain condition on L, i.e. L = J. Following the idea of 
the AGCM method we define the MK in the form of a scalar product of vector spherical 
harmonics: 

(YjM; E(Q,v))s ,  = d'S(p)YJd(p~-')*Yj'M(p)exp (:pv). (A3) : s, 
Using equations (Al) and (21) leads us to the result 

CY!",; E(Q, v ~ s ,  = C I(JmlulJM)12(y,m; E(Q, ~ s ~ .  (-44) 
mc 

Equation (A4) relates the new overlap operator fl, determined by the MK (A3) to the 
overlap operator @,m given by the MK (Ylm; E(Q, v))s2. This relation can be symbolically 
written as 

U,, 

Using equation (25) and relation (A5) we get 

1 
(NRu)(g')  = 7 I(Jm14JM)l2 l2 d2SW i3 dg[rr(g)*E(g-')~(p)l*[E(g'-')0(p)l. 

(A@ 

After straightforward but tedious calculations one can show that the integrai over Sz is 
non-zero only if J = 0. This contradicts the triangle condition for the Clebsch-Gordan 
coefficients. Both conbadictory conditions imply that the space of the vector Helmholtz Lie 
optics is trivial, i.e. it contains only the zero vector. 

Ins 
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